Efficient Photocatalytic Bilirubin Removal over the Biocompatible Core/Shell P25/g-C3N4 Heterojunctions with Metal-free Exposed Surfaces under Moderate Green Light Irradiation

نویسندگان

  • Shifei Kang
  • Hengfei Qin
  • Lu Zhang
  • Yongkui Huang
  • Xia Bai
  • Xi Li
  • Di Sun
  • Yangang Wang
  • Lifeng Cui
چکیده

Highly-monodispersed g-C3N4/TiO2 hybrids with a core/shell structure were synthesized from a simple room temperature impregnation method, in which g-C3N4 was coated through self-assembly on the commercially available Degussa P25 TiO2 nanoparticles. Structural and surface characterizations showed that the presence of g-C3N4 notably affected the light absorption characteristics of TiO2. The g-C3N4/TiO2 heterojunctions with metal-free exposed surfaces were directly used as biocompatible photocatalysts for simulated jaundice phototherapy under low-power green-light irradiation. The photocatalytic activity and stability of g-C3N4/TiO2 were enhanced relative to pure P25 or g-C3N4, which could be ascribed to the effective Z-scheme separation of photo-induced charge carriers in g-C3N4/TiO2 heterojunction. The photoactivity was maximized in the 4 wt.% g-C3N4-coated P25, as the bilirubin removal rate under green light irradiation was more than 5-fold higher than that under the clinically-used blue light without any photocatalyst. This study approves the future applications of the photocatalyst-assisted bilirubin removal in jaundice treatment under moderate green light which is more tolerable by humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterojunction engineering of graphitic carbon nitride (g-C3N4) via Pt loading with improved daylight-induced photocatalytic reduction of carbon dioxide to methane.

In this paper, noble-metal Pt nanoparticles of around 2.5 nm were deposited on graphitic carbon nitride (g-C3N4) synthesized by a chemical reduction process in ethylene glycol. Compared with pure g-C3N4, the resulting Pt-loaded g-C3N4 (Pt/CN) exhibited a considerable improvement in the photoreduction of CO2 to CH4 in the presence of water vapor at ambient temperature and atmospheric pressure un...

متن کامل

Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance

Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions (b-TiO2/g-C3N4) as visible-light-driven photocatalysts are fabricated through a simple hydrothermal-calcination process and an in-situ solid-state chemical reduction approach, followed by the mild thermal treatment (350 °C) in argon atmosphere. The prepared samples are evidently investigated by X-ray diffraction, Fourier transform...

متن کامل

Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method.

C3N4/TiO2 hybrid photocatalysts with highly enhanced photocatalytic performance were prepared by a facile ball milling method. A layered structure of g-C3N4 was formed on the surface of TiO2. The mechanochemical process can promote the dispersion of C3N4 on the surface of TiO2 particles, to form a single layer hybrid structure and a multi-layer core-shell structure. The photocatalytic activitie...

متن کامل

Facile and Efficient Self-template Synthesis of Core-coronal-shell ZnO@ZIF-8 Nanohybrid Using Ascorbic Acid and its Application for Arsenic Removal

In the present contribution, a facile and efficient protocol for synthesis a nanohybrid structure of core-coronal-shell ZnO@ZIF-8 using ascorbic acid (ZnO@AA/ZIF-8) as a new adsorbent for arsenic removal from water has been represented. For this purpose, the ZnO nanospheres were synthesized by a green and simple method followed by coating with ascorbic acid (AA) to modify their surface to achie...

متن کامل

The synergy between Ti species and g-C3N4 by doping and hybridization for the enhancement of photocatalytic H2 evolution.

A Ti species modified g-C3N4 photocatalyst was synthesized via an in situ hydrothermal route and the subsequent low-temperature calcination. The hydrothermal process results in not only the fabrication of TiO2/g-C3N4 heterojunctions, but also the coordination between Ti species and g-C3N4, which are verified by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrical r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017